激光束所瞄准的物体的象落到视场中的"小 孔"位置之上。为除去散射回观察系统的激 光,并为观察者的眼睛的安全着想,在分束 器和观察系统之间安置了一块黄色泸光片。 这泸光片对氩激光波长十分稠密,但在光谱 的黄色和红色部分,能通过足够多的光,这 样就能进行正常的引导。

实验装置使用的分束器是一块普通的显 微镜载物片,片上镀铝,固定在改装过的、 与望远镜极轴构成45度角的显微镜载物台 上。载物片上的小孔是利用超声波沿45度角 方向打出的。用一台低倍数显微镜作为目镜。

为了尽可能严格地对准激光器、观察系 统和望远镜,采取了下列步骤:

首先调整激光器,使有最高的输出;
取下会聚透镜和分束器,移动激光

器的承载架,使激光束与显微镜的光轴对准;

 装上会聚透镜,调整其方位,使望远镜孔径上的照明尽可能均匀。离开望远镜 孔径的光落到圆屋顶内面的一个点上,用肉 眼就能看到;

 4.装上分束器并作调节,直到激光束 通过小孔。然后调节会聚透镜的焦点位置, 使其大约落到分束器的平面上;

精细调节会聚透镜和分 束 器 的 位置,使能均匀地充满望远镜的孔径。

当这系统使用 24 吋直径、f/36 的天文 望远镜时,出射光束的准直度所受到的限制 仅仅是大气湍流效应和约为2弧秒的膛孔对 准精度。

取自 Mechanical Engng., 1970 (Aug.), 92, Na8, 40

用激光测量人造卫星的距离

提要:为了探讨以激光进行人造卫星测距的跟踪方式,并获得设计制造的基础 资料,研制了激光测距装置。主体是输出20兆瓦的红宝石激光器和光电接收器, 安装在支座上,沿着预先由电子计算机计算的人造卫星的预测轨道进行程序跟踪。 该装置的性能是,测量距离500~2,000公里的卫星时,系统精度可达5米,分辨 率1.5米。该装置安装在东京天文台堂平观察所,作过实地试验,即1969年6月 8日接收到了从美帝带有向后反射器的卫星 GEOS-B 以及法国的 DIADEME 卫星 反射回来的激光,天文台的电子计算机的检验结果表明,得到的测距值的确是由人 造卫星的反射光所致。本文就跟踪方式、装置概要和实地试验结果作一简要的论述。

绪 言

在人造卫星上装上光学向后反射器,根

据从地上发射的激光束被卫星反射后重新返回所需的时间,能精确地测出卫星的距离; 这种方法在1964年就由美帝国家航空和宇

- 25 -

宙航行局、斯密森天文台、法国国立宇宙研 究所等单位进行了实验研究^[1],但在日本尚 无研究先例。因而制造这种装置、并通过试 验,将会得到有关系统的方案论证或者装置 设计制造方面的基础资料。

激光测距的必要性

如能以1米或几十厘米的精度求得人造 卫星的轨道,那么就能利用卫星研究有助于 预报地震的地壳变动和检证相对性原理。对 于精确测定地理位置处于孤岛等地球表面上 的遥远地点的相互位置也提供了一种极为有 效的手段。但是这样高的精度,用电波的方 法是不容易得到的。日本虽然在东京天文台 安装了一台贝卡纳照相机用于卫星的照相摄 影,但仍是不够的。其理由是因为照相摄影 时1秒~2秒这样的不可避免的角度误差, 对于远达1,000公里的卫星位置,至少会带 来10米左右的误差。

然而,使用激光时情况就会变化。和雷 达相同,激光能测量到卫星的距离,而不能 测得卫星在空间中的方向。但是其测距精度 现在就已达到几米,不久的将来有可能提高 到几十厘米。如和贝卡纳照相机并用,那么 就能直接确定从观测点到卫星的距离和方 向。除了未来的大型卫星以外,即使在中小 卫星的场合,因电源等原因而难于装载电波 雷达用的中继器,以致无法使用次级雷达, 所以用电波方法进行跟踪时的精度恐怕不得 不是几公里;在这种情况下,激光可能成为 一种极为有效的跟踪手段。

激光可能有的这种精度和高分辨率,在 卫星测地及高精度轨道计测方面正使它成为 一种极有魅力的手段。 系统的基本设计

1. 线路设计和接收输入

远距离激光测距时,和电波雷达一样, 以脉冲形式发射激光,算出到反射光返回的 时间,即可知道距离;测定距离越长,要求 的峰值输出越高,通常可使用固体激光的巨 脉冲输出。

为了进一步延长距离,使用上述的逆向 反射器是一种有效的手段,它是使光向着与 入射光完全相同的方向上反射的一种特殊棱 镜。1964年10月美帝国家航空和宇宙航行 局首先发射了装有这种逆向反射器的卫星探 测者22号,现在共有6个。这次也是以这 些卫星为对象进行实验的。

用上述方法发射波长 6,943 埃的红宝石 激光,其能量为 E(J)时,接收到的光子数 S 可用以下的雷达方程式表示:

 $\frac{S}{E} = \frac{1}{R^4} \frac{A_s A_R}{\Omega_T \Omega_s} \cdot T^2 \frac{10^{19} \, \text{\%F}}{2.86 \, \text{ft} \, \text{ft}} \qquad (1)$

这里, As: 卫星的有效反射面积(米²);

- A_R: 有效接收面积(米²);
- Ωr: 发射光束具有的立体角(球面角 度);
 - Ωs: 反射光束具有的立体角(球面角 度);
 - R: 距离(米);
 - T: 大气的衰减系数。

现在,如果在(1)式中给出计及外来噪 声(从概率论的观点出发,予以确定)的最低 光探测水平和能够实现的激光峰值输出,那 么由于其他参数 *As*、*A_R、Ω_T、Ω_s*,其值 受跟踪机构所制约,于是就能自动地决定最 大距离 *R*_w,

例如把该装置具有的各参数值和美帝 GEOS 卫星的 $A_s=9.35 \times 10^{-2}$ 、 $\Omega_s=7.85$

- 26 -

×10⁻⁹相组合,在2,000公里的距离上发射 1 焦耳能量时,求得的接收光子数是3×10⁴。 *T* 会因气象条件不同而大幅度变化,这里用 的是晴天时的*T*值,取作0.7。实际的接收 水平在很大程度上受距离、激光脉冲能量的 波动、光到卫星的入射角、光束中的能量分 布、大气扰动以及后述的速度光 行 差 所 支 配。

2. 测距精度

给这种激光测距精度带来影响的误差原 因是多种多样的,但误差范围都是几米的量 级^[2]。为了研讨系统的精度,把这些标准偏 差视作系统精度,对于标准距离2,000公里 的系统误差约为5米;这时的距离分辨率可 由计数器频率决定,在本装置时是1.5米。

3. 信号探测

使用光电倍增管的目的是,从背景噪声 中有效地探测接收光脉冲,以驱动计数器, 为了截止背景噪声,需要阻止非激光波长输 入的干涉滤光片和限制视场角的可变光阑。 实际上跟踪限于夜间进行,所以暗电流噪声 比背景噪声更为重要。

暗电流噪声受光电子倍增管的光电面的 面积、一级倍增器电极的组成物质的种类所 支配,通过冷却可予以降低。本装置中的光 电倍增管要用于冰冷却。

考虑到本装置中使用的光电倍增管 RCA7265的量子效率是2.5%, 倍增器电 极的倍增率是10⁷,如果假定负载电阻是1 千欧,那么脉冲宽度50毫微秒时因负载电阻 而产生的终端电压 Vs为:

 $V_{S} \!=\! \frac{3 \!\times\! 10^{4} \!\times\! 0.025 \!\times\! 1.66 \times\! 10^{-19} \!\times\! 10^{7}}{50 \!\times\! 10^{-9}} \, 10^{3}$

=25 伏 (2)

与此相对, 假定暗电流的脉冲宽度为1 毫微秒, 那么暗电流噪声的负载终端 电压 V_N 为

$$V_N = \frac{1 \times 1.66 \times 10^{-19} \times 10^7}{1 \times 10^{-9}} 10^3$$

= 1.66 ft (3)

光电面以及各个倍增器电极的光电子发生机 构服从统计分布,如果忽略这一点,那么信 号和噪声就能由振幅而辨别。

4. 关于速度光行差效应的探讨

本裝置的对象是高度500公里~2,000公 里的卫星,卫星绕地球的周期约是100~120 分,移动速度是7~8公里/秒,考虑到光速 为3×10⁵公里/秒时,可以想象向这种高速 移动体入射的光返回地面时角度会有一些偏 离。这个偏离在地面上的典型数值是50~ 100米量级。然而由于美帝和法国的卫星上 的逆向反射面的反射光束具有的立体角设计 制造成能将这些角度偏离包括进去的数值 (10~20秒),这样,在光束中包含了速度光 行差效应引起的角度偏离,所以光束中心即 使发生偏离,反射光束仍会返回发射点,无 须担心接收点离开发射点的情况发生^[3]。

装置的概要和性能

这种激光测距装置分为三个系统:它们 是激光发射部分(包括跟踪支座)、接收光学 系统和测距数据系统,这三个系统以计数方 式互相连接,起到光雷达系统的作用。

1. 发射、接收部分

(1)激光发射部分

激光发射部分由激光振荡部分、电源部 分、冷却水循环装置和激光准直仪构成。其 装置示于图 1。

激光振荡部分使用直 径 1 厘 米、长 12 厘米的红宝石,以 FX-47-B 氙灯作激发光 源,为了提高激发效率,将它们装在里面镀 铝的椭圆镜筒内,内部通冷却水致冷。以转

- 27 -

图 1 激光发射部分配置图。

镜Q开关方式产生巨脉冲振荡,重复率每秒 1次,平均峰值输出20兆瓦,脉冲宽度50 毫微秒,需要的条件是氙灯输入电能为 3,600 焦耳。

Q开关的同步采用磁传感方式,和转镜 直接耦合。为了使由此得到的400赫的脉冲 和计数器的数字钟或节拍脉冲本机振荡器中 每隔1~30秒产生的脉冲并合引起振荡,从 图1触发放大器内的与门电路取出紧接着这 些脉冲的脉冲。这个脉冲分为二部分,一部 分用于触发氙灯,另一部分通过单稳多谐振 荡器控制电源的充电。充电的过程是:借助 激光主电源中的变压器,把100 伏的单相电 源升压到2.6千伏,利用控制电路发出的控 制脉冲和二个 4G63 型闸流管充入串联电阻 为300欧、容量1,800微法的电容器。在卫 星测距时,从操作方便、安全可靠出发,希 望停止振荡的操作简便,为此借助继电器和 延迟电路以一个开关的接通和断开控制各个 电路和电源工作。

激光器的输入是 3,600 焦耳, 进行重复

率每秒1次的振荡时,因发热而不能持续振 荡,于是需要冷却水循环装置。除发热问题 外,因氙灯直接和水接触,造成放电时有离 子析出,这就导致了冷却水电阻的急剧劣 化。为将它抑制到一定的值,使流量达100 厘米³/秒。冷却水本身也要通过净水制造装 置以进行纯化。

激光振荡器射出射束的发散角,测定结 果是4毫弧度,根据跟踪的要求,借助使用 倍率为10倍的伽利略望远镜式的准直仪,可 使其在0.6~5.6毫弧度的范围内变化。除 了改变发散角外,调整接收望远镜、瞄准望 远镜和激光的光轴,使之重合也需要准直仪, 为此附加了可以取换的瞄准目镜,把整个准 直仪安装在半固定式的微动台上。这部分的 装置示于图2。

其次在激光振荡器和准直仪之间安置了 分束器,一部分激光振荡光由 SGD-100 型 光电二极管接收,产生约2 伏的脉冲进入计 数器的起动器。

在迄今为止的实验中,激光器已经受了

- 28 -

图 2 激光准直仪及微动台。

大约 42,000 次的振荡,但红宝石在平均 经过 10,000 次振荡后急剧损伤,从而需 要 调换。

将上述激光发射部分的主要规格汇总起 来示于表 1。

项 目	各 种 参 数				
(1) 激光振荡部分	22				
方式	转镜式 Q开关红宝石激光 器				
振荡波长	6,943 埃				
激光输出	平均 20 兆瓦				
脉冲宽度	50 毫微秒				
能量	1 焦耳				
脉冲重复率	每秒 1~30 次(可变)				
发散角	4 毫弧度 (无准直仪)				
	0.6~5.5 毫弧度 (使用者				
	旦仄/				
(2) 激光器电原					
输入(氙灯的输入)	3,600 焦耳				
使用定额	每秒1次,6分钟				
(3) 冷却水循环装置					
流 量	100 厘米 ³ /秒				
一次使用定额	每秒1次,6分钟				
激光准直仪					
形 式	带微动台的伽里略望远镜				
有效直径	100 毫米				
物镜焦距	700 毫米				
目镜焦距	70 毫米				

表 1 激光发射部分规格

(2)接收部分

如图 3 所示,接收部分由卡塞格伦式接 收器、连接光学系统和光电转换部分构成。 如前所述,在装置设计时,为了限止视场 角,需要加长焦距;而另一方面,为了减 轻重量又需要极力缩短整个的长度。为此采 取卡塞格伦结构的形状以力图减轻重量。另

外,镜面在铝镀层上面还镀上 SiO₂。这样, 聚焦光束通过滤光片、可变光阑、瞄准光轴 重合用的光学系统后,到达光电倍增管的光 电面。根据不同的使用目的,可以插入各种 滤光片,如红外、ND、干涉滤光片(70 埃)等 等。光阑是采取外部可变的方式,视场的可 变范围是 3~20 分。图中的瞄准重合用的光 学系统,在调整光轴平行时需要用到它。图 4 是光学连接系统和光探测部分的外形图。

图 4 连接光学系统和光探测部分。

2. 跟踪系统

为了进行实验,除上述的激光发射部分 和接收部分以外,还需要有安装它们并使之 以很高的精度指向卫星方向的跟踪支座。跟 踪方式可有多种考虑,例如象美帝斯密森天 文台进行的那样,约每30秒发射1次激光,

- 29 -

在卫星以高速横穿天空期间,根据预先计算 的激光发射和该时刻的预报位置,以手动的 方式不断跟踪。与此相反,本装置采用了象 美帝国家航空和宇宙航行局等单位所采用的 那种方式,即根据电子计算机预先计算了的 每秒钟的卫星位置,有条不紊地转动支座, 跟踪中经常保持每秒发射一次激光。如果每 发射一次,都能接收到来自卫星的反射,使 观察得以成功,那么从收集轨道数据的目的 出发,一分一次的频率就已足够;但可以想 象,由于跟踪精度和反射光电平的波动等种 种原因,使接收率下降,于是就要采用上述 的这种方式。但是,既使是采用这种方式, 在跟踪中也要经常监视卫星,要有补偿手 段,以便当卫星偏离预定位置时,随时修正 激光发射和接收部分光轴的方向。考虑了这 种机构以后才使跟踪带有逆向反射器的卫星 成为可能。

(1)支座

支座是将微波用的经纬台式无线支座一 部分加以改造而成,其电路系统如图5所 示。除了激光发射、接收部分以外,还装有 导向望远镜,外形如图6所示。图6中位于 仰角轴下面的平衡锤在平衡时须用到它。

图 5 支座电路系统图。

图 6 跟踪装置主体。

- 30 -

驱动装置的主电动机 是 输 出 0.5 马 力 (仰角)、0.75 马力(方位角)的直流电动 机, 最大转速 2.5°/秒(仰角)、5.4°/秒(方位角)。 用可控硅整流器点弧角控制供给电动机电枢 的电压,借此控制速度;根据卫星跟踪的需 要,最小速度可调到最大速度的 1/100。

图中▷是性能良好的高增益 直 流 放 大 器,将下述的角度程序装置中产生的误差电 压接到输入端,在放大器内加上测速发电机 的反馈电压,以进行程序跟踪控制。此外, 如果从输入端以手动的方式给予一定的直流 电压,那么装置就以与此时电压相对应的一 定的角速度旋转,这对于以手动的方式把支 座转到所需方向时是必要的。

此外,电位计与方位轴和仰角轴直接连接,以便在程序工作时测定所需的位置。同步发射、接收器用于探测位置,轴的角度的读取误差可达 0.03 度以下。

(2)导向望远镜

在人造卫星的跟踪过程中,它用来测获 不断反射太阳光而闪闪发光的卫星,以确认 激光发射、接收轴是否精确地指向卫星。由 于清楚地知道,在本装置中用一般市场上出 售的或标准的天体望远镜是不可能稳定地跟 踪 8 级程度的卫星^[4],于是通过微动台将二 台在天文台上使用的"远地点"望远镜和"彗 星探寻"望远镜安装在支座上。 表 2 示出了它们的规格。装置中把视场 的十字线及其可动机构("彗星探寻"望远镜 才有)和亮度可变的照明装置都考虑到了。

表 2 导向望远镜规格

品	名	"远地点"望远镜	"慧星探寻"望远镜
方	式	5 吋折射式	8 时折射式
放 大	率	20	32
开口	直 径	12.5 厘米	20.0厘米
视场	角	2.4 度	1.0 度
照明十	字线	有	有
十字线	可动机构	无	有

(3)角度程序装置

角度程序装置是用来使支座沿着预测的 轨道转动的,它作为支座跟踪的最佳方式有 必要加以研制。出于这样的目的,制作了如 图 7 所示的角度程序装置。图 8 是它的外形 图。

图 7 角度程序装置系统图。

该装置在读出事先由电子计算机计算的 预测跟踪角度,并把它们和仰角和方位角的 实际位置比较时,要求产生适当的伺服偏差 信号以修正跟踪支座的位置。

用电子计算机把预测轨道穿孔在8位纸 带上,其内容通过由与数字钟(下述)的时刻

— 31 —

同步的1秒1次的节拍脉冲驱动的纸带读取 机读取。这样由纸带读取的角度随时间呈阶

图 8 角度程序装置外形图。

梯形的电压波形,另一方面,因支座的运动 是连续的,故这样相减所得的误差呈三角波 形。所以,图中 SI 每秒一次接通 约 100 毫 秒,其间 900 毫秒则以电容器 Cl 充电电压 的形式滞留着,这样使偏差讯号自动获得内 插处理。其结果是,轨道预报每秒一次就可 以了,而附带的长度也可较短,每次行程测 试约 10 米。

此外,进一步提高程序跟踪 精 度 的 方 法,对以上得到的偏差电压进行积分,把偏 差电压的输出加起来。这对于去除上述的自 动控制系统的恒定速度偏差是必要的。

关于跟踪误差需要说及的是,用误差显示计就能记录图7中支座的跟踪精度。即这是由电位计决定的支座位置和纸带的指令位置之差。如果现在把这个指示值看作是动态的位置精度,那么对于典型的驱动带是小于0.1度。另一方面,实际的卫星跟踪系统的跟踪精度受到电位计的分辩力和线性性、支座垂直轴的倾斜、光轴重合的精度、预报纸带相对一个卫星的精度等种种因素的影响。就这一点而言,可将借助调整图7中 R7 所

示的补偿偏压而使激光发射、接收部分的光 轴和卫星一致时所需的角度大小看作为系统 精度。其大小为0.5度左右。导向望远镜的 视场角如表2所示,高于1.0度,实际跟踪 卫星时,它能将卫星确定地捕捉在视野内。

3. 测距系统

测距系统(图9)由激光发射部分、控制 角度程序装置的系统以及卫星距离测定系统 构成,后者使用100兆赫计数器的时间间隔 测定组件, 驱动它的起止信号分别从激光分 束器和光电倍增管的输出放大器 (发射极跟 随器)中取出。此时,测量时间间隔组件的 数据就存储一次,在装置中还需要数字打印 机以便在数据回复成零以前进行打印记录。 但是,因为只有在计数器时间间隔测定完 结时打印机才可工作,所以要有一种选通机 能以给出打印指令信号。此外,光电倍增管 的发射极跟随器的输出在进入计数器前,要 通过电压振幅阈门,这可以避免因为外光部 或光电子倍增管本身的噪声等引起计数器的 运转,与此同时,它对于控制引起计数器运 转的输入信号最低光电子数是必要的。

用数字钟产生1秒1次的"节拍脉冲"作 为同时驱动激光发射部、角度程序装置和测 距系统的信号。在数字钟里,作为乙次时间 标准的1兆赫振荡器发出讯号的频率,通过 为与外部时间标准同步的时间耦合电路而分 频降至每秒一个脉冲。这样获得的节拍脉冲 前沿与外部标准时间,例如JJY同步;同 时,由并列的数字打印装置将这一时间的表 示、测定信息记录下来。

基于转镜 Q 开关的机理,激光器不能 做到在节拍脉冲起始的同时发出巨脉冲,一 定伴随有几毫秒的时间延迟。但这与观察上 的精度并不矛盾。其理由是,在10毫秒期 间卫星仅移动70~80米,而另一方面,激

图 9 测距系统图。

光束在卫星附近的发散直径约为1~2公里。 为了正确测定相对节拍脉冲的激光发射时 刻,就需要延迟时间间隔计数器。这种计数 器用节拍脉冲起动,用来自激光分束器的信 号使其停止,以10 微秒的精度计测发射激 光的时刻。

延迟计数器的数据也是一次存贮,和上 述的时间间隔测定结果一起进行打印。

此外,为了进一步改善光电倍增管所得 接收信号的信噪比,使用了"距离选通"。与 前述电压振幅阈门不同,它是时间阈门。事 先,用电子计算机预测卫星的距离,除了在 预计应接收到回波的前后很短的时间(约1毫 秒),此外,使射极跟随器的输出无法截止计 数器的运转。它确能有效地去除外部光、近 距离的散射光和光电子倍增管本身的噪声。 图 10 是测距装置的外形图。

图 10 测距装置。

- 33 -

实地试验结果和研究

1. 实验方法

在东京天文台堂平观察所(埼玉县都几 川村,高度 876 米)新设了 5×8 米的观察 室,安装了上述的装置,以进行实地卫星实 验。和天体望远镜的情况一样,也要选择观 察条件好的场所,这是因为红宝石激光的波 长是可见光谱中的一种波长(红色波段),如 果天不晴朗,则不能进行观察作业;从导向 望远镜监视,跟跟卫星的角度考虑,为了稳 定地看到 8 级光度的卫星,空气中的尘埃和 烟雾必须要少。

另外,如果在不久的将来进一步提高卫 星的预报精度,并改善支座的精度,那么甚 至在白天也有可能进行激光观察,那时恐怕 也不要望远镜的监视了。图 12 示出了 安 装 在观察室里的试制装置的设置情况。

图 11 靶板设置情况。

此外,为了提高卫星测距的精度,需要 测定装置本身的光线折回时间,事先知道装 置内部的延迟时间,以此对测距时间进行补 偿。为此,在相距约900米的地方安置了如 图11 所示的靶板。

图 12 观察室。

如照片所示,靶板上安装了4点的标记, 与激光发射部、接收部、导向望远镜相对应, 以便平行地调整光轴。另一方面,用倾斜成 45度的板使激光再次扩散反射后被接收部 接收。测定的结果是,装置内的延迟时间约 为100毫微秒。相对于这个靶板的测距试验 结果,与使用经纬仪的测距结果是一致的, 仅差20厘米。

2. 观测作业的概要和装置的运转

下面按照操作程序,概述一下装置在进 行实验期间的运转方法:

(1)研究了卫星的姿态、角度以后,就 要选择作为跟踪对象的卫星,并决定观察日 期;

(2)用电子计算机算出与进行实验的卫星轨迹相对应的预测数据,从而作成轨道纸带,

(3)使用作为准直仪组成部分的特殊光 轴耦合装置,在白天事先调整激光光轴,使 这装置中十字线的中心与激光光束中心相一 致;

也就是说激光光轴是这样调整的:将激 光束射到靶板上,确认击中位置的中心位置。 然后调换准直仪中的反射镜,使十字线的中 心和这一位置相一致;

(4)利用靶板进行调整,使激光发射部、 接收部和导向望远镜的光轴彼此平行;

(5)借助北极星调整光轴的平行度;

(6)检查装置,在卫星来到之前,进行

- 34 -

激光发射试验、地面目标测距试验和运用纸 带的支座运转试验,以确认整个系统的正常 工作;

(7) 在观察前的 20 分钟打开屋顶,打 孔的轨道纸带相应于 6 分钟观测时间,将支 架方向与这观测时间的起始时的位置(开始 看到卫星的方向)相重合。

(8)跟踪开始后,用纸带进行录音,需 要时还可用人造偏光板摄影记录接收波形, 记下所需的情况;

(9)跟踪终了后,研究所得的数据。

以上是装置的运转方法,但如一次对几 个卫星轨道进行实验时,(3)~(6)的操作 可省略。通常到实验开始所需的时间是4小时。

此外,实验能否进行与月令有关,以满 月这一天为中心,前后的5~7天因天空过 于明亮而无法看到卫星。通常认为气象对进 行实验也有很大影响。进行实验时,空中有 云是不行的,需要无云的晴天。

3. 预测轨道的方法

预测轨道的计算可以说是这次研制工作 的协作性环节。现在是每周一次,通过东京 天文台与斯密森天文台连络获得卫星的轨道 参数,以这些参数为基础用天文台的电子计 算机进行预测轨道的计算。今后打算与日立 电子公司合作,用它的科学计算用的小型计 算机 HITAC-10 替换天文台的计算机。

从斯密森天文台获得的参数是,给出参 数的时刻、轨道长半径、近地点平均离角的 二次时间变化率、轨道倾斜角、轨道离心率、 升交点经度、升交点经度时间变化率、近地 点引数、近地点引数的时间变化率、近地点 平均离角、近地点平均离角的一次时间变化 率、轨道离心率的时间变化率等,再加上给 出观察地点的纬度、经度及高度、观察开始 的时间、观察终了的时刻、预报时间间隔等 作为计算机的输入数据,就能计算卫星的预 测轨道。

计算机的计算结果,除了瞬时仰角、方 位角、直接距离、亮、暗(Shine、Dark)外, 还求出每间隔 20 秒时间的激光束往返预测 时间、地心角、位相角等各个项目,并打印 出来。另一方面,每秒的仰角、方位角所附 加的特殊偏置值以 0.1 度单位打 孔 在 纸 带 (8 位电子计算机用)上,实验时送入角度程 序装置。这种偏置值是一个常数,取决于安 在支架上的电位计的安装角度,对于方位角, 每转一圈有一个不连续点。

4. 实地试验结果及考察

我们运用上面试制的装置,从1968年 12月起进行了实地试验,但在实际卫星测 距时,由于各种性能有必要进一步改善,以 及天气等等理由,尽管对卫星预报轨道实验 进行了160次之多,但仍未得到数据。1969 年3月~6月的整个实验期间,只有几天是 晴朗的好天。

然而在 1969 年 6 月 8 日~10 日幸运 地 碰上了好的月令和晴天,进行了实验,于 6 月 8 日 22 时 27 分 00 秒 (日本标准时 间), 成功地接收到了由北向南穿过日本上空的 GEOS-B卫星上的反射光,发现的距离为 1,638.886 公里。

本试验在6月7日~10日,对GEOS-B、DIADEME-1、DIADEME-2这三个卫 星进行实验,每天各测4个轨迹,共计16个 轨迹,其中由于天气的缘故,如表3所示,只 是对8~10日的三个轨迹得到了测距数据。

在这些结果中,就10日的DIADEME-2 的轨迹,把对应于激光发射时刻的激光往返 时间与电子计算机的预测值相比较,描绘成 曲线示于图 13。

— 35 —

表 3 测距结果

卫星名称 日 期		时间	激光测距	连续测距次数		
	(日本标准时间)	次数	2 秒	3 秒	4 秒	
GEOS-B	1969年6月8日	22 点 25 分 00 秒~31 分 00 秒	8	· 명한 집 1	1	0
DIADEME-1	1969年6月9日	2点33分00秒~39分00秒	17	1	1	1
DIADEME-2	1969年6月10日	2点22分00秒~28分00秒	24	0	0 8	1

5.5

在上面的试验结果中,由于光电倍增管 不进行冷却,处于常温,所以因光电倍增管 本体发生的噪声而触发计数器的可能性也是 很大的。但是跟踪试验中根据纸带记录器录 音下的观察状况,能精确地知道卫星处在表 示激光光轴的十字线中心的时刻,试验终结 分析的结果,发现这一时刻与图中描绘的测 距时刻完全一致。另外,在2~4秒钟期间, 以1秒的间隔,可以得到1个地方的几点的 测距,这从上述光电倍增管的暗噪声的随机 性是无法考虑的。

为了进一步确认测距值是由人造卫星的返回光所导致的,作了如下的检查。即如图

14 所示,观察时间取在横轴上,到卫星的距 离取在纵轴上,假定激光测距所得的测距值 的曲线是 O,由轨道计算所得的距离的预测 值的曲线是 C,那么 C 相对于 O 一般伴随 有 0~5 秒左右的时间偏差。现在,将激光 测距时刻的 C 值 (不考虑时间偏差)逐个由 电子计算机重新计算出来,再逐个取 O~C 的代数差,如果 O 是真正的测定值,那么如 图所示差值 L 对时间大致呈直线状。相反, 若测距值是光电增倍管嗓音之类的随机值, 那么就不会有这样的直线得出。我们用这种 方法检查的结果,在三次行程观测中,都确 切得到与直线偏差约 30 毫微秒的 O~C 值。 由此可知,测距确是由人造卫星来的反射波 实现的。

— 36 —

结 语

如上所述,本装置经过现场试验,就装 置性能、实际的跟踪卫星能力以及包括望远 镜在内的光学系统进行了总合试验,大致获 得了所期望的性能。通过这样的各种试验所 得的实验数据都是第一次。

参考资料(略)

取自 竹内端夫, 富田弘一郎ほが; 《日立评论》, 1970, 52, №4, 45~51

空间通讯中的激光和毫米波系统的比较

对世界通讯网的首要要求是有一种能把 大量信息从一个通讯卫星传送到另一个卫星 上去的有效方法。

正在考虑达到此目的的两种技术:一种 是毫米波系统,另一种是激光系统。最近有 人比较了这两种方法。已得出结论,即两种 方法都行。毫米波系统更容易早日投入使 用,但是激光系统归根结底还是比较好的。

在深空通讯中,从宇宙飞船 到 宇 宙 飞 船,采用激光系统是唯一的方法。

一种能付诸使用的激光系统大约在五年

后就能就绪。但在另一方面,由三个地球卫 星组成的系统目前就可以设计,并在三、四 年后连同毫米波技术投入工作。这种系统能 把信息从地面或另一个卫星——如地球资源 卫星——传送到世界上任一地点。

在激光通讯系统中,最大的问题是建成 这种系统并能工作。从微波到毫米波不需要 作巨大的探索,因为已经有很悠久的通讯 历史。但是如果今天准备设计一种激光卫 星-卫星通讯线路,那么它将采用什么形 式?

图 1 如果三个地球同步卫星 相隔120°.就能进行世界范围 内的通讯。

图 2 利用这种全球通讯系统,可以将从地面或另一卫星发射 来的信息转送到地球上任一点。这种系统将在 4 年之后连同 毫米波技术一起投入工作。

- 37 -